Esame di Stato per l'abilitazione alla professione di Geologo Nuovo ordinamento Sessione di Giugno 2010

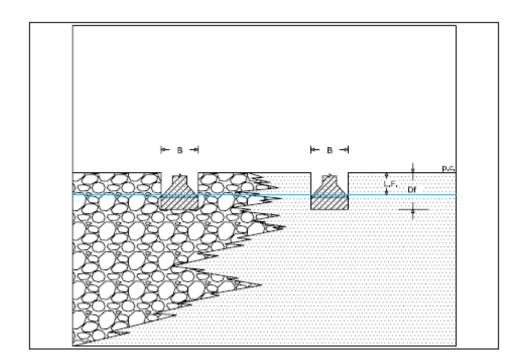
PROBLEMA N° 1

Nello schema geomorfologico e cinematico riportato in allegato, è delimitata una porzione di versante, mediamente inclinato di 7°, potenzialmente interessata da un movimento franoso che coinvolge una coltre detritica caotica di natura prevalentemente limoso-argillosa con affioramenti, a luoghi, di pezzame lapideo. Lo spessore della coltre è pari a 10m, mentre la lunghezza della frana è considerevole in rapporto alla profondità della coltre stessa; inoltre, il livello di falda è prossimo al piano campagna.

Nell'area sono state svolte indagini in sito e, successivamente, prove di laboratorio che hanno permesso di determinare i seguenti parametri di stato e di resistenza di picco e residua.

$$\gamma_{sat} = 20 \text{ kN/m}^3$$
c' = 10 kN/m²
 $\phi' = 26^{\circ}$
 $\phi_r = 11^{\circ}$

Sulla base della cartografia allegata, dei parametri geometrici del versante e di quelli meccanici forniti, il candidato:


- 1. descriva il meccanismo di frana più probabile che può coinvolgere il versante in esame;
- analizzi le condizioni di stabilità del versante, mediante approccio all'equilibrio limite, in relazione sia alle resistenze di picco sia a quelle residue e ne discuta i risultati:
- 3. illustri opportune azioni di intervento per la messa in sicurezza del pendio, tenuto conto di quanto prescritto dalla normativa tecnica vigente.

PROBLEMA N° 2

In una piana alluvionale è in progetto un fabbricato ad uso industriale per il quale è stata ipotizzata una fondazione superficiale costituita da due serie di plinti, come schematicamente riportato in sezione di Figura 1, con base quadrata di lato B = 2.5m, piano di posa Df = 2.5m dal p.c., interasse I = 8m e carico di progetto $\Delta Q = 200 \text{kN/m}^2$. Le ricostruzioni geologiche ed idrogeologiche del sottosuolo del sito sono state effettuate sulla base di dati di sondaggio; questi indicano che una serie di plinti fonda su ghiaie, mentre l'altra su sabbie mediamente addensate; il livello di falda è rinvenuto a 1.5m dal p.c..

Inoltre, da prove in sito ed in laboratorio risulta che le sabbie hanno, a profondità di 5m dal p.c., un indice dei vuoti pari a 0.65 cui corrisponde un peso dell'unità di volume di $17kN/m^3$, da ritenersi valido anche per la parte soprafalda a seguito di capillarità, ed un angolo di resistenza al taglio pari a 36°. Prove in sito consentono di attribuire alle ghiaie un valore di γ sat pari a $20kN/m^3$ ed un angolo di resistenza al taglio pari a 40° . Sulla base di tutte le indicazioni fornite e dello schema allegato, il candidato:

- 1. valuti se il carico di fondazione è compatibile con i carichi ammissibili per i terreni di fondazione, utilizzando approcci e modelli di analisi semplificati (Terzaghi):
- 2. descriva le principali modalità di rottura per fondazioni superficiali a carico concentrato:
- 3. discuta i risultati ottenuti anche in relazione alla normativa attualmente vigente.

Esame di Stato per l'abilitazione alla professione di Geologo Nuovo ordinamento Sessione di Giugno 2010

PROBLEMA N° 3

In un pozzo per approvvigionamento idrico di nuova realizzazione, profondo 80 m, è stata condotta una prova di emungimento di lunga durata (32 ore di pompaggio + 20 ore di recovery test); il piezometro in osservazione dista 10,30 m dal pozzo di pompaggio e la portata emunta è stata di 25 L/s. Il candidato determini:

i valori dei parametri idrodinamici dell'acquifero risultanti dalla prova di pompaggio, tramite costruzione del grafico abbassamenti/tempo (in scala semilogaritmica);

il valore della trasmissività dell'acquifero come risultante dalla prova di risalita eseguita al termine della succitata prova di pompaggio, basandosi sui valori piezometrici registrati nel medesimo piezometro e riportati in allegato;

l'abbassamento indotto da un prelievo di identica portata, dopo un anno di pompaggio ad una distanza di 200 m dal pozzo realizzato, dove è in progetto un nuovo impianto di captazione.

	anafan dità livalla	390	16,52	1925	16,20
tempo	profondità livello piezometrico (m dal	420	16,53	1926	16,19
(min)	p.c.)	450	16,53	1928	16,17
0	15,74	480	16,54	1930	16,15
1	16,02	540	16,54	1935	16,12
2	16,08	600	16,55	1940	16,10
3	16,12	660	16,56	1945	16,08
4	16,14	720	16,56	1950	16,07
5	16,16	780	16,56	1960	16,04
7	16,20	840	16,57	1970	16,02
10	16,22	900	16,57	1980	16,01
15	16,25	960	16,57	1990	15,98
20	16,28	1020	16,57	2010	15,96
25	16,29	1080	16,57	2025	15,95
30	16,31	1140	16,58	2040	15,93
40	16,33	1200	16,58	2060	15,92
50	16,35	1260	16,58	2080	15,90
60	16,36	1320	16,58	2100	15,89
75	16,39	1380	16,58	2120	15,88
90	16,40	1440	16,58	2140	15,87
105	16,42	1500	16,58	2160	15,86
120	16,43	1560	16.59	2190	15,85
140	16,45	1620	16,59	2220	15,83
160	16,46	1680	16,59	2250	15,83
180	16,47	1740	16,59	2400	15,81
200	16,47	1800	16,59	2550	15,78
220	16,48	1860	16,59	2700	15,76
240	16,50	1920	16,60	2850	15,74
270	16,50	1921	16,41	3060	15,73
300	16,50	1922	16,29	3120	15,73
330	16,51	1923	16,25		
360	16,52	1924	16,22		

Esame di Stato per l'abilitazione alla professione di Geologo Nuovo ordinamento Sessione di Giugno 2010

PROBLEMA 1

Modello pendio infinito con filtrazione parallela al pendio

σ = γ_{sat} z cos² β z = γ_{sat} z sinβcosβ z = γ_{sat} z sinβcosβ

 $u = \gamma_w z \cos^2 \beta = 9.81 \times 10 \times \cos^2 \beta$ 96.6 kN/m²

F (res. picco) = $[c' + (\sigma - u) tg 26^{\circ}]/\tau = (10.0 + 48.96)/\tau = 58.81 kN/m² / 24.23 kN/m² =$ **2.43**

F(res. residua) γ'/γ_{sat} x tg $\phi r/\text{tg}\beta$ = **0.89**

PROBLEMA 2

Q ult = 1.2cNc + γ DfNq + 0.4γ BN γ

Per il plinto su ghiaie

c = 0 $\phi = 40^{\circ}$ c = 20 sopra folda

 $\gamma = 20$ sopra falda

 γ '= 10.19 sotto falda $N \gamma = 90$ Nq = 65

B = 2.5m

Quindi:

Q ult = $(\gamma * LF * Nq + \gamma ' (Df - LF)Nq + 0.4 \gamma ' B N\gamma = 3529 kN/m^2$ Q netta = Q ult $- (\gamma * LF + \gamma ' (Df - LF) = 3489 kN/m^2$

Q amm = (Q netta /3) + ($\gamma * LF + \gamma' (Df - LF) = 1203 \text{ kN/m}^2$

Per il plinto su sabbie

c = 0 B = 2.5m $\phi = 36^{\circ}$ Df = 2.5m

 γ = 17 sopra falda

 γ '= 7.19 sotto falda $N \gamma = 43$ Nq = 35

Quindi:

Q ult = $(\gamma * LF * Nq + \gamma' (Df - LF)Nq + 0.4 \gamma' B N\gamma = 1453 kN/m^2$

Q netta = Q ult – $((\gamma * LF + \gamma ' (Df - LF)) = 1421 kN/m^2$

Q amm = (Q netta /3) + (γ * LF + γ ' (Df - LF) = 506 kN/m2