

Carta intestata del Dipartimento

Educational plan of Master di II level International Master in "CO₂ Geological Storage"" Dipartimento Scienze della Terra, Facoltà_Scienze MM., FF., NN.

Director del Master:	Prof. S. Bigi
Educational-scientific council	The Educational-scientific council includes professor from the Partner Universities:-Prof. S. Bigi-Prof. E. Carminati-Prof. M. Cercato-Prof. P. Ballirano-Prof. M. Battaglia-Prof. Bruno Saftic (Zaghreb University)-Prof. Domagoj Vulin (Zaghreb University)-Prof. Iva Kolenković Močilac (Zaghreb University)-Prof. Bruno Tomljienovic (Zagreb University)
Supplmentary grants:	not provided
timetable	Timetable is attached at the end of this document
website	https://www.uniroma1.it/it/offerta-formativa/master/2019/co2-geological-storage-internazionale
language	English
Online teaching	Not provided.
Useful information	This course is provided within the EU project ENOS (Enabling Onshore CO2 Storage in Europe) (http://www.enos-project.ew/)to prepare a new generation of young people who want to work on these topics.This training course will present an overview of the state-of- the-art of CCS operations and research; it will focus on the technical and scientific knowledge acquired in the European pilot sites (including the ones from ENOS project) for CO2 injection and safety monitoring, the exploration of critical processes in laboratory studies, and numerical modelling.

Educational plan of Joint Postgraduate International Master in "CO2 Geological Storage"

Module	description	teacher	(SSD) (italian education al system classificat ion)	CFU	hours	Type of teaching activity (lessons, exercises, etc.)	Type of exames) See below
Module 1 - Introduction to CO2 geological storage - Social aspect	This is an introductory module about all the topic that will be considered in the master and deals with all the aspect of the CO_2 storage, the role of GCS and its potentiality to solve the climate change problems, the basic knowledge about the social impact of this technology.	Prof. S. Bigi Prof. E. Carminati	Geo/03	3	24 hours of lessons on a total of 75	Lectures	
Module 2 - CO2 Capture and transport. Present day industrial utilization of CO2	 The module covers the other technologies that are linked to the geological storage of CO₂, ie transport and capture. The different industrial capture processes will be illustrated, assessing their advantages and disadvantages, as well as the best field of application (cements, hydrocarbons, etc.). Some examples of processes currently used in industry will be illustrated. The expected learning outcomes can be summarized as: Define the different process to capture co2 from Industrial waste Distinguish the advantages and disadvantages of each of these technologies Know the present day distribution of these technologies at global level. 	Dott. A. Pettinau (Sotacarbo) (Enos Project)	ING-IND 24, 25	3	20 hours of lessons on a total of 75	Lectures	

Module 3 - Introduction to exploration geophysics	The module introduces to the basis of seismic interpretation, focused on the site characterization and potential evaluation of reservoir suitable for CO2 storage. The module presents the main aspect of acquisition, elaboration and interpretation of seismic data, and, during the exercise, the interpretation of data using dedicated software for the reconstruction of the geological model in 2 and 3D. The expected learning outcomes can be	Prof. S. Bigi Prof. battaglia	Geo/03 – Geo/11 Geo/10 Geo/12	3	20 hours of lessons 8 hours of exercise on a total of 75	Lectures, Practical exercises	
	 summarized as: Define different type of traps based on seismic interpretation Provide basic knowledge about acquisition and processing of seismic reflection data, Develop appropriate skills to support data interpretation; Acquire methodologies for the development 3D geological models. 						
Module 4 - CO ₂ geological storage options - geology and geochemistry	The module will give an overview of the types of storage reservoirs from a geochemical- mineralogical point of view, the related trapping mechanisms and their potential CO_2 storage volumes. It will discuss the physical properties of CO2 under storage conditions which influence storage, and it will describe the geochemical processes that influence long-term isolation of CO2 in the reservoir. The expected learning outcomes can be summarized as follow:	Prof. S. E. Beaubien Prof. P. Ballirano	Geo/03 Geo/08 Geo/06	3	22 hours of lessons on a total of 75	Lectures	

Exams oral exam	 Understanding of the basic concepts of CO2 storage reservoir types, storage mechanisms, and CO2 properties at storage depth. Understanding of the geochemical processes that control gas-water-rock interaction, as related to mobility and isolation. Develop appropriate skills to support data interpretation; Acquire methodologies to understand geochemical models. 	rcises). Transfer to	o Zagreb Uni	versity.			
Module 5 - Introduction to reservoir engineering	 The module will give the students basic knowledge of multiphase flow mechanisms and parameters that can help in characterization of flow in porous rock. There will be explained the main principles of PVT description of fluids (brine, gas, oil), with emphasis on phase behaviour related to systems with large CO₂ content. Attention will be put on calculations related to injection (both miscible and immiscible) and on main principles of reservoir data surveillance. The expected learning outcomes are: Choose the adequate equation to calculate flow permeability based on laboratory or well inflow data. 	Prof. D. Vulin (Zagheb University)	Geo/03 – ING-IND 30	3	25 hours of lessons on a total of 75.	Lectures, computer exercises	

[r		1	1	1	T1
	 Implement published correlations to put 						
	together all required parameters for volumetric						
	calculations in the underground.						
	• Predict pressure vs. recovery changes by						
	material balance (MBE).						
	• Prepare the dataset for fluid injection model.						
	• Assess if there are issues regarding injectivity						
	and fracturing pressure						
	• Understand how Buckley-Leverett theory can						
	be implemented to various cases of fluid						
	injection.						
	Analyse production data and predict future						
	recoveries. Implement the production decline						
	curve analysis (DCA) and PVT data to predict						
	CO2 emissions.						
	• Demonstrate an integrated set of analyses for						
	recovery, injection, and storage of fluids in a						
	formation and justify interpreted measurement						
	results.						
Module 6 -	The module should introduce different approach	Bruno	Geo/03	3	25 hours of	lectures	
Storage site	when estimating CO_2 storage potential during	Saftic			lectures on		
selection and	basin assessment and CO_2 storage capacity of a	(Zagheb			a total of 75.		
capacity estimates	certain storage object following site screening and based on site characterization. Course focuses on	University)			13.		
commates	explanation of different issues arising when						
	assessing potential for CO_2 storage or storage						
	capacity of different types of storage objects (deep						
	saline aquifers, depleted hydrocarbon reservoirs,						

coal seams, salt caverns). Also, procedures of			
detailed characterization of reservoir rocks and			
cap rocks are described.			
The expected learning outcomes can be			
summarized as follow:			
• Define different levels of assessment of CO ₂			
storage potential of a certain area			
• Define the deep saline aquifer and elaborate			
methods to estimate its properties important from			
the aspect of geological storage of CO_2			
• Elaborate factors influencing possibility of			
geological storage in hydrocarbon reservoirs			
(type of trap, reservoir properties, pressure			
properties, seal efficiency, saturation)			
• Explain influence of coal structure and			
adsorption trapping on geological storage of CO ₂			
in coal seams			
• Explain the specificities of CO2 geological			
storage in salt caverns			
• Define criteria for assessing basin suitability for			
CO2 geological storage and to explain procedure			
of prospective storage site screening			
• Explain how different reservoir rock			
characteristics influence the rock's potential to			
store CO_2 and to describe how to assess them			
(lithology, heterogeneity, porosity, permeability)			
• Explain how different characteristics of cap-			
rocks influence the reservoir's potential to store			
CO_2 and to describe how to assess them			
(lithology and integrity of a cap-rocks).			

Module 7 -	This module introduces the students to numerical	Gillian	Geo/03	3	25 hours	lectures	
Numerical	modelling, including an outline of how models are	Pickup			(12	computer	
modelling of	constructed followed by a focus on flow	Heriot Watt			lectures, 13	exercises	
CO2 storage	simulation. The course reinforces theory learnt in	University			exercises)		
	the module 5- Reservoir Engineering, which is	Edinburgh,			on a total of 75		
	essential to ensure that students can learn how to	Scotland.			15		
	set up simulations and how to interpret results.						
	The basic theory of flow simulation is presented,						
	followed by a number of challenges (such as						
	upscaling and dealing with uncertainty in						
	reservoir properties). Finally, a review of more						
	advanced processes, such as coupled modelling is						
	presented.						
	Expected learning outcomes are:						
	• Explain how numerical modelling can be used						
	to forecast CO2 storage capacity and outline the						
	processes which can be simulated using numerical						
	modelling of CO2 storage.						
	• Describe the types of data required for building						
	a static model, and outline the workflow for static						
	modelling of a storage formation.						
	• Review the factors which determine the						
	behaviour of CO2 in a storage formation –						
	density, viscosity, solubility, relative permeability						
	and capillary pressure.						
	• Outline steps required to set up a simulation of						
	CO2 injection and storage.						

					-			-
how the equations may be extended to two-phase flow. Describe methods of solving the flow equations. • Review the procedures of history-matching and quantification of uncertainty. • Discuss the issues involved in choosing a grid size (grid refinement) and in upscaling data for use in a grid cell. • Outline some more advanced modelling techniques – e.g. coupled flow simulation. • Set up and run simple simulations of CO2 injection to investigate migration, pressure build- up, dissolution and pore-scale trapping. • Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage.D. VULIN (Zagheb) University)Geo/03 - ING-IND 30325 hours on a total of a total of a total of 75Module 8 - EOR with CO2The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection on CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN (Zagheb) University)325 hours on a total of a total of 75lectures		• Derive the equations for flow simulation in a						
flow. Describe methods of solving the flow equations.in the flow equations.in the flow equations.• Review the procedures of history-matching and quantification of uncertainty.• Discuss the issues involved in choosing a grid size (grid refinement) and in upscaling data for use in a grid cell.• Discuss the issues involved in choosing a grid size (grid refinement) and in upscaling data for use in a grid cell.• Outline some more advanced modelling techniques – e.g. coupled flow simulation.• Set up and run simple simulations of CO2 injection to investigate migration, pressure build- up, dissolution and pore-scale trapping.• Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage.D. VULINGeo/03 – ING-IND3 a total of a total of 75lectures computer exercisesModule 8 - EOR with CO2The module will give the students insight to the mechanisms and evaluation methods for Enhanced OI Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2, injection intoD. VULIN (Zagheb University)3 a total of 75lectures exercisesup with one project related to CO2 injection intoup with one project related to CO2 injection intoD. VULINGeo/03 – total of 75lectures		1D, single-phase compressible system and explain						
equations.equations.• Review the procedures of history-matching and quantification of uncertainty.• Review the procedures of history-matching and quantification of uncertainty.• Discuss the issues involved in choosing a grid size (grid refinement) and in upscaling data for use in a grid cell.• Outline some more advanced modelling techniques - e.g. coupled flow simulation.• Set up and run simple simulations of CO2 injection to investigate migration, pressure build- up, dissolution and pore-scale trapping.• Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage.D. VULIN (Zagheb University)Geo/03 - 1NG-IND 30325 hours on a total of a total of 75Module 8 - EOR with CO2The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection intoD. VULIN (Zagheb University)325 hours on a total of a total of 7530		how the equations may be extended to two-phase						
 Review the procedures of history-matching and quantification of uncertainty. Discuss the issues involved in choosing a grid size (grid refinement) and in upscaling data for use in a grid cell. Outline some more advanced modelling techniques – e.g. coupled flow simulation. Set up and run simple simulations of CO2 injection to investigate migration, pressure build-up, dissolution and pore-scale trapping. Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage. Module 8 - EOR with CO2 The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection into 		flow. Describe methods of solving the flow						
quantification of uncertainty.Discuss the issues involved in choosing a grid size (grid refinement) and in upscaling data for use in a grid cell.Image: Compute State St		equations.						
 Discuss the issues involved in choosing a grid size (grid refinement) and in upscaling data for use in a grid cell. Outline some more advanced modelling techniques – e.g. coupled flow simulation. Set up and run simple simulations of CO2 injection to investigate migration, pressure build-up, dissolution and pore-scale trapping. Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage. Module 8 - EOR with CO2 The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes related to CO2 injection on CO2 emissions mitigation. Each student should come up with one project related to CO2 injection into 		• Review the procedures of history-matching and						
size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in a grid cell.size (grid refinement) and in upscaling data for use in grid data for up, dissolution and pore-scale trapping.size (grid refinement) and in the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN (Zagheb University)Geo/03 - ING-IND 30325 hours on a total of a total of 75lectures computer exercises		quantification of uncertainty.						
use in a grid cell.• Outline some more advanced modelling techniques – e.g. coupled flow simulation. • Set up and run simple simulations of CO2 injection to investigate migration, pressure build- up, dissolution and pore-scale trapping. • Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage.D. VULINGeo/03 – ING-IND325 hours on a total of a total of 75lectures computer exercisesModule 8 - EOR with CO2The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN30325 hours on a total of a total of 75		• Discuss the issues involved in choosing a grid						
 Outline some more advanced modelling techniques – e.g. coupled flow simulation. Set up and run simple simulations of CO2 injection to investigate migration, pressure build-up, dissolution and pore-scale trapping. Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage. Module 8 - EOR with CO2 The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO₂ injection or CO₂ emissions mitigation. Each student should come up with one project related to CO2 injection into 		size (grid refinement) and in upscaling data for						
techniques – e.g. coupled flow simulation.techniques – e.g. coupled flow simulation.• Set up and run simple simulations of CO2 injection to investigate migration, pressure build- up, dissolution and pore-scale trapping.Image: Compute CO2 storage.Image: Compute CO2 storage.Module 8 - EOR with CO2The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN CO2Geo/03 - ING-IND 30325 hours on a total of a total of 75lectures computer exercises		use in a grid cell.						
 Set up and run simple simulations of CO2 injection to investigate migration, pressure build- up, dissolution and pore-scale trapping. Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage. Module 8 - EOR with CO2 The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO₂ injection or CO₂ emissions mitigation. Each student should come up with one project related to CO2 injection into D. VULIN (Zagheb University) D. VULIN (Zagheb University) See/03 - ING-IND 30 J. Stours on a total of a total of 75 Electures computer exercises 		Outline some more advanced modelling						
injection to investigate migration, pressure build- up, dissolution and pore-scale trapping.Image: Compute the students insight of the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN CO2Geo/03 - ING-IND 303 a total of a total of 75lectures computer exercises		techniques – e.g. coupled flow simulation.						
up, dissolution and pore-scale trapping. • Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage.D. VULINGeo/03 - ING-IND325 hours on a total of a total of 75lectures computer exercisesModule 8 - EOR with CO2The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN (Zagheb University)325 hours on a total of a total of 75lectures computer 		• Set up and run simple simulations of CO2						
 Perform simulations to study the effects of geological structure and heterogeneity on CO2 storage. Module 8 - EOR with CO2 The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO₂ injection or CO₂ emissions mitigation. Each student should come up with one project related to CO2 injection into D. VULIN (Zagheb University) D. VULIN (Zagheb University) D. VULIN (Zagheb University) D. VULIN (Zagheb University) 		injection to investigate migration, pressure build-						
geological structure and heterogeneity on CO2 storage.geological structure and heterogeneity on CO2 to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN CO2 to the processes student should come up with one project related to CO2 injection intogeological structure and heterogeneity and structure and heterogeneity and structure and heterogeneity and structure and heterogeneity and structure and structure and heterogeneity and structure and heterogeneity and structure and heterogeneity and structure and structure and heterogeneity and structure and heterogeneity and structure and heterogeneity and structure and heterogeneity and structure and structure and heterogeneity and structure and heterogeneity and structure and h		up, dissolution and pore-scale trapping.						
storage.Storage.Image: Construction of the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULINGeo/03 – ING-IND 30325 hours on a total of a total of a total of a total of 75		• Perform simulations to study the effects of						
Module 8 - EOR with CO2The module will give the students insight to the mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection intoD. VULIN D. VULIN (Zagheb University)Geo/03 - ING-IND 30325 hours on a total of a total of 75lectures computer exercises		geological structure and heterogeneity on CO2						
with CO2mechanisms and evaluation methods for Enhanced Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO2 injection or CO2 emissions mitigation. Each student should come up with one project related to CO2 injection into(Zagheb University)ING-IND 30a total of a total of 75computer exercises		storage.						
Oil Recovery (EOR) and for enhancing the processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO ₂ injection or CO ₂ emissions mitigation. Each student should come up with one project related to CO2 injection into 30 total of 75 exercises	Module 8 - EOR	The module will give the students insight to the	D. VULIN	Geo/03 –	3	25 hours on	lectures	
processes related to exploitation of underground resources in general. The emphasis will be put on processes that involve CO ₂ injection or CO ₂ emissions mitigation. Each student should come up with one project related to CO2 injection into	with CO2	mechanisms and evaluation methods for Enhanced	(Zagheb				-	
resources in general. The emphasis will be put on processes that involve CO ₂ injection or CO ₂ emissions mitigation. Each student should come up with one project related to CO ₂ injection into		Oil Recovery (EOR) and for enhancing the	University)	30		total of 75	exercises	
processes that involve CO ₂ injection or CO ₂ emissions mitigation. Each student should come up with one project related to CO ₂ injection into		processes related to exploitation of underground						
emissions mitigation. Each student should come up with one project related to CO2 injection into		resources in general. The emphasis will be put on						
up with one project related to CO2 injection into		processes that involve CO ₂ injection or CO ₂						
		emissions mitigation. Each student should come						
underground.		up with one project related to CO2 injection into						
		underground.						

	1	1	1	1	1		,
	Learning outcomes are:						
	Perform immiscible injection process analysis						
	by implementing Buckley-Leverett equation, as						
	the part of EOR process						
	• List the most used EOR methods and warn						
	about limitations and advantages of each method.						
	• Understand the data upscaling process to						
	prepare dataset for EOR evaluation						
	• Perform feasibility analysis of a given EOR						
	case.						
	• Describe the PVT tests required for CO2-EOR.						
	Describe the special PVT phase diagram for						
	ternary system CO2-H2O-NaCl						
	• Predict minimum miscibility pressure (CO2 and						
	oil) and solubility (CO2 and brine)						
	• Match the given laboratory data with PVT						
	simulation software, and prepare (export) matched						
	equation of state for further analysis (simulation)						
	• Perform simulation test to determine dispersion						
	model and performance of CO2 injection to the						
	underground						
Exams: writing o	f term papers (seminars) to be submitted at the end	l for module 6, pro	esentation re	equired fo	or module 5 ar	d 8; written exam	s for
module 7.							
Module 9 -	The module will introduce risk assessment for	Niels	Geo/03	2	20 h of	lectures	
Storage Risks	CO ₂ geological storage to prevent any CO ₂	Poulsen			lectures on		
	leakage. The course focuses on risk assessment is	GEUS,			a total of a		
	an iterative process that must be made in each	,			total of 50		
	phase of a storage project, from selection,						

		1	0		1	1	
	characterization and baseline study to site closure,	Denmark					
	post closure and final transfer of responsibility						
	from operator to state. This assessment is the						
	basis for designing a good monitoring plan and an						
	effective plan for prevention and correction in						
	case of leakage. The risk assessment and						
	monitoring plan are updated when necessary, in						
	particular in case of any abnormal behaviour or at						
	closure and post closure phases. Attention will						
	also be on the obligation to assess the risks and						
	remediations associated with the CCS						
	technology.						
	The request learning outcomes are:						
	• Define and introduction to risk research						
	• Hazard identification and risk characterisation						
	• Potential pathways for CO2 leakage						
	Environmental impacts						
	Risk assessment methodologies						
	• Risk mitigation and remediation measures						
Exams and tran	nsfer to Rome, Sapienza University - written exams						
Module 10 -	The module introduces the principles of the main	Prof. M.	Geo11	5	40h of	Lectures,	
Geophysical	geophysical techniques applied to CO ₂ storage.	Cercato			lectures, 2	exercise,	
monitoring	Course focuses on explanation of electrical,				days of	fieldwork	
	electromagnetic and seismic geophysical methods				fieldwork,		
	for assessing potential and limits of geological				on a total of		
	formations for CO ₂ storage and their storage				a total of		
	capacity, and for monitoring the CO ₂ storage				125h		
	process.						
	The expected learning outcomes can be						
	summarized as follow:						

	• Explain the theoretical principles of geoelectrical						
	and seismic methods applied to CO ₂ storage;						
	· Explain potential and limits of the geophysical						
	reconstruction for CO ₂ storage, in terms of						
	resolution, depth of investigation and diagnostic						
	capability;						
	• Explain the inversion process and its application						
	for characterization and monitoring of CO ₂						
	geological storage;						
	· Select the piecewise geophysical method to be						
	applied for the particular case study related to CO ₂						
	storage;						
	• Design a geophysical campaign and define						
	properly field acquisition parameters;						
	· Process correctly geophysical data acquired in						
	field by using specific software;						
	· Link geophysical to petro-physical parameters of						
	rocks and soils (lithology, heterogeneity, porosity,						
	permeability);						
	· Define criteria for monitoring the CO_2 storage						
	process.						
Module 11 -	This module will introduce a wide range of	To define	Geo/08	3	26 h of	,	
Geochemical	regional and detailed geochemical techniques used				lectures and	exercise,	
monitoring	to monitor CCS sites to ensure carbon credit				1 day of	fieldwork	
	auditing, to find and quantify potential leaks, and				fieldwork		
	to determine effectiveness of any remediation				on a total of		
	action taken. Lessons will describe the technical				75 h		
	background and operation of each method, their						
	advantages and disadvantages in terms of						
	sensitivity, scale and resolution, and costs. Field						
	exercises at the end of this module will give the			1		1	

Module 12 -	 students hands-on experience with a sub-set of the described methods. The expected learning outcomes can be summarized as follow: Knowledge of what geochemical monitoring methods are available and how they work Ability to choose the most appropriate methods based on a given site's characteristics and the specific monitoring goals of the project Develop appropriate skills to support data interpretation. 	Prof. Sean	Geo/03 –	2	17 h	Lectures	
Module 12 - Drilling and wells	 The module is an introductory course to drilling and wells. The topics covered will include drilling equipment, well control, well-testing, completions, and permeability enhancement. The module will be a mixture of descriptive material and also practical skills in conducting simple design calculations. The expected learning outcomes can be summarized as follow: Describe basic drilling equipment, particularly drilling-rig components and mud circuit. Explain use of various drilling mud additives. Conduct basic design calculations to determine mud weights and casings needed for a given well based on simple models for defining fracture and formation pressure, swab and surge allowances, and circulation allowance. Describe nature of kicks and basic principles of kick control. 	Prof. Sean Rigby University of Nottingham Scoltland	Geo/03 – ING-IND 30	2	17 h lectures, 3h problems/e xercises on a total of 50.	Lectures exercises	

	 Conduct basic calculations for determination of kill mud weight. Explain the principles of core drilling. Explain basic principles of directional drilling. Describe some applications of horizontal wells. Explain basic principles of well-testing. Describe the process of completion and different completion types. Describe methods of permeability enhancement. 						
Module 13 - Economic and Regulatory aspects of CCS technology	The course provides an insight into the very basics of geological, regulatory, economic, and social aspects of the carbon capture and storage technology (CCS). CCS is considered as an important tool in decreasing global carbon dioxide emissions, thus capable of reducing the humankind's impact on the climate change. The success individual CCS projects is derived from suitable geological conditions, favourable regulatory framework that would contribute to their economic viability, and public support on the nation as well as local level.	Prof. Alla Shogenova Tallinn University, Estonia (Enos Project) Prof. Samuela Vercelli	Geo/03 – ING-IND 35	1	14h on a total of 25	Lectures	
Module 14 - CCUS and cross-cutting issues	The module will introduce different utilisation options of captured CO ₂ , including CO ₂ use for enhanced recovery of resources (geothermal energy, coal-bed methane, shale gas, water), CO ₂ mineral carbonation (using natural rocks and waste	Alla Shogenova, Tallinn University, Estonia	Geo/03 – Geo/08 ING- IND24,25	3	20h on a total of 50	Lectures	

	-
materials) and CO ₂ use for hydrocarbon	
productions. The concept of Bio-CCS and	
negative emissions will be introduced, including	
direct and indirect GHG emissions, Bio-CCS	
technologies, their challenges and advantages and	
operating Bio-CCS projects. The module will also	
deal with: CO2 mineral carbonation; Comparison	
of CO2 Geological storage and mineral	
carbonation technologies; CO2 Storage in basalts;	
synergy of CGS with geothermal energy recovery;	
energy storage and water recovery; advantages of	
synergy of CGS with renewable energy recovery;	
the role of cement industry in producing CO2	
emissions. Expected learning outcomes:	
Awareness about different options of CO2 use	
Explain bio-CCS technology, negative	
emissions, direct and indirect emissions,	
advantages and challenges	
Explain mineral carbonation options routes	
Explain chemical composition of rocks and	
determine the rock samples suitable for CO2	
mineral carbonation,	
Describe processes, parameters and advantages	
of in-situ mineral carbonation in basalts	
Define technological options for CO2 use for	
enhanced recovery of geothermal energy.	

TOTAL			60	1500 h		
Other activities					Not provided	
Final exams	The final exam consists of a presentation and defence of the result obtained from the activities done during traineeship 2.					
traineership 2	Total assessment and thesis work and side assignment for the project work. The students will be evaluated based on the scores obtained during the course and will be assigned the side for the internship according to the score, keeping in mind the interests of the student and the activities offered by the different institutions.	vari	15	375h	Project work, with final report and presentation to be discussed with the scientific commission / council.	
traineership 1	group work (5 groups of 2 students) This week will be organized with active student work, which will be divided into groups and will have to conduct a small research independently. The starting database will be the same for all groups. The result will be a geological interpretation and the evaluation of the storage potential of the proposed area.		5	125h	25h Sapienza first edition; Zagreb second edition.	
Exams, written (module 10) and oral (others modules)					
	• Explain the capture methods most of all suitable to capture CO2 in the cement industry					