	Determined Endodermal Stem Cells from Duodenal Brunner's Glands and Method of Isolating them.		
	Priority Number n. US16/368,524 del 28.03.2019		Abstract The present patent individuates a proger cell population within Brunner's Glands in
KEYWORDS	Patent Type	Duodenal Submucosal glands	human duodenum. These cells sl phenotypic traits of endodermal stem c
□ STEM CELLS	Patent for invention.		and positivity for pluripotency markers;
CELL THERAPY			present disclosure provides methods isolating them and provides evidence
	Co-Ownership Sapienza 50%, University of North Carolina 50%.	dSG progenitor	these progenitor cells are easily isola from human duodenum (i.e. organ donc can be expanded in culture, induced
		cells	differentiate towards hepatic and pancre lineages, and could repopulate the hep
DIABETES	Inventors Alvaro Domenico, Gaudio Eugenio, Carpino Guido, Cardinale Vincenzo, Reid		parenchyma when injected into the mu liver. Duodenal Brunner's glands co represent a cell source for clinical progra
	Lola.	1 Mucosa disruption 0 Dispection 1 Dispection 1 Dispection 1 Dispection	of regenerative medicine, compris autologous cell therapy.
CHEMISTRY & BIOTECHNOLOGY	Industrial & Commercial Reference Biotechnological and Pharmaceutical sectors.	2 30 min solution 37°C Clonogenic Growth Organoid Formation Organoid Formation	Pubblicazioni ❖ Human duodenal subm ucosal gla
CONTACTS	Time to Market TRL 5 – technology validated in relevant environment.	Digestion Buffer	contain stem cells with pot enti al for l and pancreatic regenerative medic Cardinale V., Carpino G., Overi Safarikia S., Costantini D., Lu W.
	Availability Licensing, Research, Development and Experimentation.	4 Magnetic enrichment	Riccioni O., Nevi L., Zhang W., Melar F., Zizzari I., Moretti M., Chiappetta M Nuti M., Maroder M., Berloco P Forbes S., Reid L., Gaudio E., Alvard Page 466 UEG Journal Abstract B 2019 (Poster Presentation).
	Fig. 2 Procedure for isolation of duodenal submucosal gland cells.		Fig. 3 Functional properties of isolated duode submucosal gland cells.

APIENZA

patent individuates a progenitor n within Brunner's Glands in the denum. These cells show raits of endodermal stem cells for pluripotency markers; the closure provides methods of m and provides evidence that nitor cells are easily isolated duodenum (i.e. organ donors), anded in culture, induced to towards hepatic and pancreatic d could repopulate the hepatic when injected into the murine enal Brunner's glands could cell source for clinical programs ative medicine, comprising ell therapy.

ni

luodenal subm ucosal glands em cells with pot enti al for liver creatic regenerative medicine. V., Carpino G., Overi D., S., Costantini D., Lu W.-Y., ., Nevi L., Zhang W., Melandro I., Moretti M., Chiappetta M.F., Maroder M., Berloco P.B., Reid L., Gaudio E., Alvaro D. UEG Journal | Abstract Book ster Presentation).

nal properties of isolated duodenal nd cells.

ASuRTT UFFICIO VALORIZZAZIONE E TRASFERIMENTO TECNOLOGICO SETTORE BREVETTI E TRASFERIMENTO TECNOLOGICO http://uniroma1.it/ricerca/brevetti

Determined Endodermal Stem Cells from Duodenal Brunner's Glands and Methods of Isolating them.

Technical Description Technical aspects of the present patent. This disclosure provides a novel source of In the field of liver diseases, orthotopic liver intestinal stem cells located into intestinal hepatocyte submucosal crypts. Duodenal organoids and to maintain undifferentiated phenotype with endocrine hepatocyte and murine liver and to support hepatocyte in disease in mice.

Technologies & Advantages

relate to a four-step approach that has been | endoderm progenitor cells with multipotent | transplantation represents the only curative developed to isolate stem/progenitor cells capability and the procedures to isolate the treatment for acute liver failure and endfrom the submucosal glands of the human cells from postnatal duodenum. Human stage chronic liver disease. Since liver duodenum. This methodology includes the duodenal submucosal gland progenitor cells transplantation is limited by a severe disruption of the mucosa layer to eliminate have the capability to differentiate into shortage of organ donors, cell therapy and pancreatic gland representing a readily available source alternative option to support liver functions progenitor cells can grow in vitro as obtainable from organ donors. These cells while waiting for organ allocation. However, their are isolated from organs discarded from regenerative medicine approach for liver null transplantation programs and, therefore, the diseases requires the identification of expression of mature cell markers. Duodenal ' organ procurement for their isolation would 'sustainable and readily available cell submucosal gland progenitor cells can be easier compared to obtaining livers for the sources. Duodenal submucosal glands could differentiate into mature towards mature isolation of mature hepatocytes and hepatic represent an autologous and heterologous pancreatic progenitor cells. Remarkably, these cells do source of endoderm progenitors. Moreover, lineages. Moreover, in vivo experiments i not require genetic reprogramming or major i their capability to differentiate into pancreatic individuated their capability to repopulate manipulation to differentiate into mature fate; \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} -\begin{bmatrix} -\ hepatocyte mass when transplanted into therefore, they should be more easily usable regenerative medicine in diabetic patients. clinical programs compared to regeneration in experimentally induced liver 'reprogrammed cells. Finally, duodenal submucosal gland cells can be retrieved using endoscopy and then used for autologous cell and gene therapies.

Applications

β-cells, strategies could represent a feasible

CONTACTS

- PHONE NUMBERS +39.06.49910888 +39.06.49910855
- ➤ EMAIL u brevetti@uniroma1.it

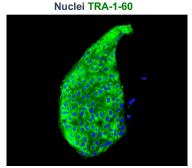



Fig. 4 Pick of EpCAM+ cells within duodenal submucosal glands.

Fig. 5 In vitro Tra-1-60+ stem/progenitor cells after isolation from duodenal submucosal glands.

ASuRTT UFFICIO VALORIZZAZIONE E TRASFERIMENTO TECNOLOGICO SETTORE BREVETTI E TRASFERIMENTO TECNOLOGICO http://uniroma1.it/ricerca/brevetti