Deep Learning

Automatic Differentiation and Pytorch

SAPIENZA

UNIVERSITA DI ROMA

Fabrizio Silvestri

Recall: Optimizing ML Models

A Recipe for

Background : :
& Machine Learning

1. Given training data:

{35‘@', Y, ff\il

4. Train with SGD:

(take small steps
opposite the gradient)

0+ = 0 — 0, Ve(fo(:), ;)

@ SApiENZA

LY UNIVERSITA DI ROMA

/)tVK(fe (.’Bz), yz)

17

SAPIENZA

UNIVERSITA DI ROMA

How to Compute Gradients

Motivations

e Backpropagation in NN models
o Implementing Backprop by hand is like programming in
Assembly. You can do it, but... why?
o Still, if you know assembly you are better off!

¥ SAPIENZA

QWY UNIVERSITA DI ROMA

Terminology

e Automatic differentiation (autodiff) refers to a general way of taking a
program which computes a value, and automatically constructing a
procedure for computing derivatives of that value.

o In this lecture, we focus on reverse mode autodiff. There is also a
forward mode, which is for computing directional derivatives.

e Backpropagation is the special case of autodiff applied to neural nets

o But in machine learning, we often use backprop synonymously with
autodiff

e Autograd is the name of a particular autodiff package.

o But lots of people, including the PyTorch developers, got confused

and started using “autograd” to mean “"autodiff” N SApPIENZA

QWY UNIVERSITA DI ROMA

What Autodiff Is not

e Autodiff is not finite differences.
o Finite differences are expensive, since you need to do a
forward pass for each derivative.
o It also induces huge numerical error.
e Autodiff is both efficient (linear in the cost of computing the value)
and numerically stable.

¥ SAPIENZA

QWY UNIVERSITA DI ROMA

What Autodiff Is not

e Autodiff is not symbolic differentiation (e.g. Mathematica).
o Symbolic differentiation can result in complex and redundant
expressions.
e The goal of autodiff is not a formula, but a procedure for computing
derivatives.

D SAPIENZA

QWY UNIVERSITA DI ROMA

What Autodiff 1s

e An autodiff system will convert the program into a sequence of primitive

operations which have specified routines for computing derivatives.
o In this representation, backprop can be done in a completely mechanical way.

Sequence of primitive operations:

Oviginal t1 = wx
riginal program:
z=tH+0b
z=wx+b t3 = —z
y: —1 t4 :exp(t3)
1+ exp(—2) =14t
1
ﬁzi(y—t)z y=1/ts
te=y—t
t; =t
L= t7/2

SAPIENZA

UNIVERSITA DI ROMA

Computation Graph

Computation Graph: Logistic Regression

def logistic(z):

return 1./ (1. + np.exp(z)) @ @— @
z t b fs Y
1

Z=15
Y = logistic(1.5)

X SAPIENZA

&/ UNIVERSITA DI ROMA

Computation Graph: Include the Loss

Original program:

R O N e S
_ 1
y_1+exp(—z)
Ezl(y—t)z w b 1
\;ts—b@—by@‘%y@—ﬁ
t 2

2

X SAPIENZA

2, \ Y UNIVERSITA DI ROMA

Backprop on the Computation Graph: Reverse Mode

e (Reverse Mode) Autodiff e :_c*6d

starts at an output of the A %

graph and moves towards % = 57 =3

: : /7 N

the beginning.
e At each node, it merges % P

all paths which originated gg _ _1

at that node

e Example: (a+b)(b+1) - -

(A SApiENZA

UL/ UNIVERSITA DI ROMA

Backprop on the Computation Graph: Reverse Mode

MATRIX HADAMARD

SPLIT ADDITION FUNCTION MULTIPLY PRODUCT

&b
¢ &b ¢

b b

™ ©

c=ax*b
c=a;b=a c=a+b b= f(a) b=Wa

0o =0,*b
8, =0p+ 0, 80 =000, =0, 8, =0 * f(a) 8, =0y x WT

5b=50*a

= SAPIENZA

UNIVERSITA DI ROMA

Things can get complicated :)

h

This is a Gated Recurrent
Unit (GRU) Computation
Graph

SAPIENZA

UNIVERSITA DI ROMA

pyTorch

(slides inspired by this deck)

https://www.uio.no/studier/emner/matnat/ifi/IN5400/v20/material/lectureslides/in5400_week4_2020_pytorch_lecture4.pdf

Do you have pyTorch installed?

>>> import numpy as np

>>> import torch

>>> import sys

>>> import matplotlib

>>> print(f'Python version: {sys.version}')

Python version: 3.8.1 | packaged by conda-forge | (default, Jan 29 2020, 14:55:04) [GCC 7.3.0]

>>> print(f'Numpy version: {np.version.version}')
Numpy version: 1.17.5

>>> print(f'PyTorch version: {torch.version.__version__}"'")
PyTorch version: 1.4.0

>>> print(f'Matplotlib version: {matplotlib.__version__}")
Matplotlib version: 3.1.2

>>> print(f'GPU present: {torch.cuda.is_available()}")
GPU present: False

SAPIENZA

UNIVERSITA DI ROMA

pyTorch packages

Package
torch

torch.nn

torch.autograd

torch.nn.functional

torch.optim

torch.utils

torchvision

Description
The top-level PyTorch package and tensor library.

A subpackage that contains modules and extensible classes for
building neural networks.

A subpackage that supports all the differentiable Tensor operations in
PyTorch.

A functional interface that contains typical operations used for
building neural networks like loss functions, activation functions, and
convolution operations.

A subpackage that contains standard optimization operations like
SGD and Adam.

A subpackage that contains utility classes like data sets and data
loaders that make data preprocessing easier.

A package that provides access to popular datasets, model
architectures, and image transformations for computer vision.

SAPIENZA

UNIVERSITA DI ROMA

torch.tensor

e PyTorch ’s tensors are very similar to NumPy’s ndarrays
o but they have a device attached, 'cpu’, ‘cuda’, or ‘cuda: X'
e They might require gradients

s t = torch. tensor([l 2,3], device="cpu'
requires_grad=False,dtype= torch float32)

>>> prlnt(t dtype)

torch.float32

>>> print(t.device)

cpu
>>> print(t.requires_grad)

False

>>> t2 = t.to(torch.device('cuda'))

>>> t3 = t.cuda() # or you can use shorthand (O

>>> t4 = t.cpu() g oDIENZA

pyTorch Data Types

Data type dtype
32-bit floating point torch
64-bit floating point torch

16-bit integer (signed) torch

.float32 or torch.float
.float64 or torch.double
16-bit floating point torch.
8-bit integer (unsigned) torch.
8-bit integer (signed) torch.
.int16 or torch.short
32-bit integer (signed) torch.
64-bit integer (signed) torch.
Boolean torch.

float16 or torch.half
uint8
int8

int32 or torch.int
int64 or torch.long
bool

Conversion in numpy and in PyTorch:

new_array
new_tensor

old_array.astype(np.int8)
old_tensor.to(torch.int8) # torch tensor

CPU tensor

torch.
torch.
torch.
torch.
torch.
torch.
torch.
torch.
torch.

FloatTensor
DoubleTensor
HalfTensor
ByteTensor
CharTensor
ShortTensor
IntTensor
LongTensor
BoolTensor

numpy array

Remarks: Almost always torch.float32 or torch.int64 are used.
Half does not work on CPUs and on many GPUs (hardware limitation).

GPU tensor

torch
torch

torch.
torch.
torch.

torch

torch.
torch.
torch.

.cuda.
.cuda.
cuda.
cuda.
cuda.
.cuda.
cuda.
cuda.
cuda.

FloatTensor
DoubleTensor
HalfTensor
ByteTensor
CharTensor
ShortTensor
IntTensor
LongTensor
BoolTensor

SAPIENZA

UNIVERSITA DI ROMA

Creating Tensors

eye: creating diagonal matrix / tensor
zeros: creating tensor filled with zeros
ones: creating tensor filled with ones
linspace: creating linearly increasing values
arange: linearly increasing integers
>>> torch.eye(3, dtype=torch.double)
tensor(|ll.; D. O |
(0., 1.0 1,
[0., 0., 1.]], dtype=torch.float64)

>>> torch.arange(6)
tensor ([0, 1, 2, 3, 4, 5])

) SAPIENZA

UNIVERSITA DI ROMA

pyTorch functions, dimensionality

.size()

.shape

.ndim

.view(a,b,...)
.view(-1,a)
.reshape(a,b,...)
.transpose(a,b)
.permute(*dims)
.unsqueeze(dim)
Xx.unsqueeze(dim=2)
torch.cat(tensor_seq, dim=0)
For instance:

>>>t = torch.arange(6)
tensor ([0, 1, 2, 3, 4, 5])

X X X X X X X X X

#* return tuple-like object of dimensions, old codes
return tuple-like object of dimensions, numpy style
number of dimensions, also known as .dim()

#* reshapes x into size (a,b,...)

#* reshapes x into size (b,a) for some b

equivalent with .view()

swaps dimensions a and b

permutes dimensions; missing in numpy

tensor with added axis; missing in numpy

(a,b,c) tensor -> (a,b,1,c) tensor; missing in numpy
concatenates tensors along dim

>>> t.reshape(2,3) # same as t.view(2,3 or t.view(2,-1)

tensor([[0, 1, 2],
[3, 4, 5]])

>>> t.reshape(2,3).unsqueeze(1)

tensor([[[0, 1, 2]],
([3, 4, 5]11D

>>> t.reshape(2,3).unsqueeze(1).shape

torch.S5tze([2, 1., 3])

SAPIENZA

UNIVERSITA DI ROMA

Indexing

e Standard numpy indexing works:

>>> t = torch.arange(12).reshape(3,4)

tensor([[O, 1, 2, 3],

[4, 5, 6’ 7],

[8, 9, 16, 11]])

sss t]1,2:3]

tensor([5, 6])

>>> t[:,:] = 0 # fill everything with 0, a.k.a. t.fill (0)
tensor([[0, O, O, O],

(@, 8, &, O],

[0, 06, 0, 0]])

Memory: Sharing vs. Copying

e Copy Data:
O torch.Tensor ()
O torch.tensor ()
O torch.clone ()
o type casting

e Share Data

O

O
O
©)

Most shape changing operators keep data.

torch.
torch.
torch.
torch.

as tensor ()
from numpy ()
view ()
reshape ()

XA SApPIENZA

UNIVERSITA DI ROMA

Memory: Sharing vs. Copying

e How to test it?
o create atensor
o copy/clonelview it
o modify an element
o compare the elements

>>> 3 = np.arange(6) # [0,1,2,3,4,5]
>>> t = torch.from_numpy(a)

woi B2 = 11

=ss ¢

tensor([©0, 1, 11, 3, 4, 5])

>>> 4

array([0, 1, 11, 3, 4, 5]) # Changed the underlying numpy array too!
>>> b = a.copy()
>>> p = t.clone()
sow B[] = F # a,t change, b, p remain intact.

SAPIENZA

UNIVERSITA DI ROMA

Creating Instances of torch.Tensor w/o Data

>>> torch.eye(2)
tensor([[1., 0.],
[0, 111D
>>> torch.zeros(2,2)
tensor([[0., 0.],
8y Ball)
>>> torch.ones(2,2)
tensor([[1., T:],

[sy 2]1)

>>> torch.rand(2,2)
tensor([[0.6849, 0.1091],
[0.4953, 0.8975]])

>>> torch.empty(2,2) # NEVER USE IT! Creates uninitialized tensor.
tensor([[-2.2112e-16, 3.0693e-41],
[-3.0981e-16, 3.0693e-41]])

>>> torch.arange(6)
tensor ([0, 1, 2, 3, 4, 5])

D SAPIENZA

UNIVERSITA DI ROMA

Interacting with numpy

>>> import imageio
>>> 1mg = imageio.imread('example.png') # reading data from disk

>>> t = torch.from_numpy(a) # 1input from numpy array
>>> out = model(t) # processing
>>> result = out.numpy() # converting back to numpy

tuples, lists, arrays, etc. can be converted automatically:
>>> t2 = torch.tensor(...)

e Remarks:
o arrays / tensors must be on the same device.
o only detached arrays can be converted to numpy (see later)
o if data types are not the same, casting might be needed (v1. 1 or older)
m E.g. adding an integer and a float tensor together. D SApIENZA

/ UNIVERSITA DI ROMA

Autograd Example

>>> import torch
>>> from torch import autograd

>>> x1 = torch.tensor(2, requires_grad=True, dtype=torch.float32)
>>> x2 = torch.tensor(3, requires_grad=True, dtype=torch.float32)
>>> x3 = torch.tensor(1, requires_grad=True, dtype=torch.float32)
>>> x4 = torch.tensor(4, requires_grad=True, dtype=torch.float32)

>>> # Forward propagation

>o> Z1 = X1 * x2

>>> z2 = X3 * x4

>>> f = z1 + 22

>>> df_dx = grad(outputs=f, inputs = [x1, x2, x3, x4])
>>> df _dx

(tensor(3.), tensor(2.), tensor(4.), tensor(1.))

¥ SAPIENZA

QWY UNIVERSITA DI ROMA

Under the Hood (a little bit)

>>> df_dx = grad(outputs=f, inputs = [x1, x2, x3, x4])
>>> df _dx
(tensor(3.), tensor(2.), tensor(4.), tensor(1.))

10

Green number: Forward propagation
Red numbers: Backward propagation

SAPIENZA

UNIVERSITA DI ROMA

Autograd (a little bit better)

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import torch

from torch import autograd

x1 = torch.tensor(2, requires_grad=True, dtype=torch.float32)
x2 = torch.tensor(3, requires_grad=True, dtype=torch.float32)
x3 = torch.tensor(1, requires_grad=True, dtype=torch.float32)
x4 = torch.tensor(4, requires_grad=True, dtype=torch.float32)
Forward propagation

zl = x1 * x2

Z2 = X3 * x4

f=21+ 22

df dx = grad(outputs=f, inputs = [x1, x2, x3, x4]) # inconvenient
f.backward() # that is better!
print(f" f's derivative w.r.t. x1 is {x.grad}")

tensor(3.)

Autograd (a little bit better)

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import torch

from torch import autograd

x1 = torch.tensor(2, requires_grad=True, dtype=torch.float32)
x2 = torch.tensor(3, requires_grad=True, dtype=torch.float32)
x3 = torch.tensor(1, requires_grad=True, dtype=torch.float32)
x4 = torch.tensor(4, requires_grad=True, dtype=torch.float32)
Forward propagation

zl = x1 * x2

Z2 = X3 * x4

f=21+ 22

df dx = grad(outputs=f, inputs = [x1, x2, x3, x4]) # inconvenient
f.backward() # that is better!
print(f" f's derivative w.r.t. x1 is {x.grad}")

tensor(3.)

Under the Hood (a little bit)

/

Xy

data tensor(2.0)
grad tensor(4.0)
Grad_fn None
Is_leaf True
Requires_grad True

<

/

X,

data "lensor(J 0)
grad tensor(2.0)
Grad_fn None
Is_leaf True
Requires_grad True

A

e

p

f

data tensor(1.0)
grad tensor(4.0)
Grad_fn None
Is_leaf True
Requires_grad True

-~

X4

data tensor(6.0)
grad None
Grad_ftn MulBackward0
Is_leaf False
Requires_grad True

22
data tensor(4.0)
grad None
Grad_fn MulBackward0
Is_leaf False
Requires_grad True

data tensor(4.0)
grad tensor(1.0)
Grad_fn None
Is_leaf True
Requires_grad True

data tensor(10.0)
grad None
Add |—
Grad_fn AddBackward0
Is_leaf False
Requires_grad True

=

B

70
\\ ~ / ‘\
Q%:(Z/)

SAPIENZA

UNIVERSITA DI ROMA

Context managers, decorators

e \We can locally disable/enable gradient calculation with
© torch.no grad()
O torch.enable grad()
e orusingthe @torch.no grad @torch.enable grad decorators

>>> X = torch.tensor([1], requires_grad=True)
>>> with torch.no_grad():

En R ¥y =X *= g

>>> y.requires_grad

False

>>> with torch.no_grad():

with torch.enable _grad():
B y =X * 2
>>> y.requires_grad

SAPIENZA
True

UNIVERSITA DI ROMA

Example: Linear Regression

e Generating data:

== aref = 15

=>>> b ref — 8

>>> noise = 0.2 * np.random.randn(50)
>>> X = np.linspace(1, 4, 50)

&=V = arel 2 x + b [ef £ noise
e Defining loss function:

>>> def MSE_loss(prediction, target):
return (prediction-target).pow(2).mean()

(D SApiENZA

UNIVERSITA DI ROMA

Example: Linear Regression

e Data as torch tensors and the unknown variables:

XX
yy

o w

torch.tensor(x, dtype = torch.
torch.tensor(y, dtype = torch.

torch.tensors(0, requires_grad
torch.tensors(5, requires_grad

float32)
float32)

= True, dtype=torch.float32)
= True, dtype=torch.float32)

SAPIENZA

UNIVERSITA DI ROMA

Example: Linear Regression

e Training Loop:

number_of_epochs = 1000
learning_rate = 0.01

for iteration in range(number_of_epochs):

y pred =a * xx + b

loss = MSE_loss(y_pred, yy)

loss.backward()
with torch.no_grad():

a = a - learning_rate * a.grad
b =Db - learning_rate * b.grad

a.requires_grad = True
b.requires_grad = True
print(a)
print(b)

N SApIENZA

UNIVERSITA DI ROMA

Example: Linear Regression

e Result: tensor(-1.5061, requires_grad=True)
tensor(8.0354, requires_grad=True)

Bitcoin ($)

SAPIENZA

UNIVERSITA DI ROMA

time [months]

Other useful pyTorch’s tensor functions

e If you want to detach a tensor from the graph, you can use « detach () »
e If you want to get a python number from a tensor, you can use « item() »
e But if you just take an element, it still will be part of the computational graph!

>>> X=torch.tensor([2.5,3.5], requires_grad=True)
tensor([2.5000, 3.5000], requires_grad=True)

>>> X.detach()

tensor([2.5000, 3.5000])

>>> X[0] # still part of the graph!
tensor(2.5000, grad_fn=<SelectBackward>)

>>> X[0].1tem()

2.5

>>> # a frequent line when you go back to numpy:
>>> X.detach().cpu().numpy()
array([2.5, 3.5], dtype=float32)

D S A\pPIENZA

UNIVERSITA DI ROMA

Functional

The «torch.nn.functional» package is the functional interface for Pytorch features.
Most feature exist both as a function and as a class.

Structural parts, or objects with internal state usually used as objects

Stateless or simple expressions are usually used in functional form.

Activation functions, losses, convolutions, etc. It is a huge module.

import torch

import torch.nn as nn

import torch.nn.functional as F

x = torch.rand(2,2)

y = F.relu(x)

relu = nn.ReLU() # creating the object first
z = relu(x) # then using it

y == Z # they should be the same

Similarly:
mseloss = nn.MSELoss()

F.mseloss(...) == mseloss(...)

SAPIENZA

UNIVERSITA DI ROMA

A typical (pyTorch) ML Workflow

© 0N OhRWWDNRE

creating dataset

creating a neural network (model)

defining a loss function

loading samples (data loader)

predicting with the model

comparison of the prediction and the target (loss)
backpropagation: calculating gradients from the error
updating the model (optimizer)

checking the loss: if low enough, stop training

Data Loading

Data loading and preprocessing

e The «torch.utils.data» package have two useful classes for loading and
preprocessing data:
o torch.utils.data.Dataset
o torch.utils.data.DatalLoader
e [or more information visit:
o https://pytorch.org/tutorials/beginner/data loading tutorial.html

) SAPIENZA

UNIVERSITA DI ROMA

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

torch.utils.data.Dataset: Regression EX. revisited

import torch
class LinearRegressionDataset(torch.utils.data.Dataset):

def __init__ (self,N = 50, m = -3, b = 2, *args,**kwargs):
N: number of samples, e.g. 50
m: slope
b: offset
super().__init__(*args,**kwargs)

self.x = torch.rand(N)
self.noise = torch.rand(N)*0.2

self.m = m
self.b = b

def __getitem__(self, idx):
y = self.x[1dx] * self.m + self.b + self.noise[1dx]
return {'input': self.x[idx], 'target': y}

def __len__(self):
return len(self.x)

SAPIENZA

UNIVERSITA DI ROMA

torch.utils.data.Dataset: Image Datasets

import torch
import imageio
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, root, N, *args,**kwargs):
super().__init__ (*args,**kwargs)

self.input, self.target =[], []
for 1 in range(N):

t = imageio.imread(f'{root}/train_{i}.png')
t = torch.from_numpy(t).permute(2,0,1)

1 = imageio.imread(f'target_{i}.png')

1 = torch.from_numpy(l).permute(2,0,1)

self.input.append(t)
self.target.append(l)

def _ getitem__(self, idx):
return {'input': self.input[idx], 'target': self.target[idx]}

def __len__(self):
return len(self.input)

SAPIENZA

UNIVERSITA DI ROMA

torch.utils.data.Dataset: Image Datasets

import torch
import ImageDataset

datapath = 'data_directory'

myImageDataset = ImageDataset(dataPath, 50)

iterating through the samples

for sample in myImageDataset:
input = sample['input'].cpu() # or .cuda()
target = sample['target'].cpu() # or .to(device)

Never ever use .cuda() in the dataset or data loaders!

torch.utils.data.Dataloader

import torch

import ImageDataset

datapath = 'data_directory'

myImageDataset = ImageDataset(dataPath, 50)

iterating through the samples

train_loader = Dataloader(dataset=myImageDataset, batch_size=32,
shuffle=False, num_workers=2)

for sample in train_loader:

e «Dataloader» is used to:
o Batching the dataset
o Shuffling the dataset
o Utilizing multiple CPU cores/ threads

SAPIENZA

UNIVERSITA DI ROMA

Data augmentation

e modifying the dataset for better training (more robust, etc.)
e data set can have a a transform parameter

More details can be found here:
https://pytorch.org/tutorials/beginner/data loading tutorial.html

A SAPIENZA

/ UNIVERSITA DI ROMA

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

Data augmentation

import torch
import imageio
class ImageDataset(torch.utils.data.Dataset):
def _ init_ (self, root, N, transform = None, *args,**kwargs):
super().__init__ (*args,**kwargs)
self.transform = transform<§ |

def __ getitem__ (self, idx):
sample = {'input': self.input[idx], 'target': self.target[idx]}
if self.transform:
sample = self.transform(sample)
return sample

def _ len__(self):
return len(self.input)

SAPIENZA

UNIVERSITA DI ROMA

Data transformation

import torchvision.transforms as T

composed = transforms.Compose([T.Rescale(256),
T.RandomCrop(224),
T.ToTensor ()]

)

dataset = Mydataset(..., transform = composed)

another version, needs different dataset
dataset = Mydataset(..., transform = {'input' : composed,
'target' : None})

A SAPTENZA

QWY UNIVERSITA DI ROMA

Creating the Model

nn.Module

e A modelis of a nn.Module class type. A model can contain other models. E.g. we can create the class
“Model” based on the stacking nn.Modules of type nn.Linear ()

e The nn.Module’s weights as called “Parameters”, and are similar to tensors with
‘requires grad=True’.

e A nn.Module consists of an initialization of the Parameters and a forward function.

class Model(nn.Module):
def __ init_ (self):
super().__init_ ()
structure definition and initialization

def forward(self, x):
actual forward propagation
result = processing(x)
return result

SAPIENZA

UNIVERSITA DI ROMA

Model

class Model(nn.Module):
def __init__(self):
super().__init__ ()

let's assume 28x28 input images, e.g. MNIST characters

self.fcl = nn.Linear(in_features = 28 * 28, out_features = 128, bias=True)
self.fc2 = nn.Linear(in_features = 128, out_features = 64, bias=True)
self.fc3 = nn.Linear(in_features = 64, out_features = 10, bias=True)

def forward(self, x):

x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)

return Xx

SAPIENZA

UNIVERSITA DI ROMA

Model: Alternative Declaration

class Model2(nn.Module):
def __init___(self):

super().__init__ ()
let's assume 28x28 input images, e.g. MNIST characters
self.fcl = nn.Linear(in_features = 28 * 28, out_features = 128, bias=True)
self.activationl = nn.ReLU()
self.fc2 = nn.Linear(in_features
self.activation2 = nn.RelLU()
self.fc3 = nn.Linear(in_features
self.activation3 = nn.RelLU()

128, out_features = 64, bias=True)

64, out_features = 10, bias=True)

def forward(self, x):

x = self.activationil(self.fc1(x))
x = self.activation2(self.fc2(x))
x = self.activation3(self.fc3(x))
return Xx

What is the difference?
SAPIENZA

UNIVERSITA DI ROMA

nn .Module’s member functions

e Access model information

>>> model = Model()

>>> model.eval() # see below

>>> list(model.children())

[Linear(in_features=784, out_features=128, bias=True),
Linear (in_features=128, out_features=64, bias=True),
Linear(in_features=64, out features=10, bias=True)]

e Children: the parameters and modules / layers defined in the constructor.
e Parts defined in the forward method will not be listed.
e Forward is called many times, expensive objects should not be recreated.

Some layers as e.g. "dropout” and "batch_norm" should operate differently during training and evaluation of the
model. We can set the model in different state by the .train () and .eval () functions.
SAPIENZA

UNIVERSITA DI ROMA

Model’s Parameters

>>> for key, value in model.state dict().items():
print(f'layer = {key:10s} | feature shape = {value.shape}')

layer = fcl.weight | feature shape = torch.Size([128, 784])
layer = fcl.bias | feature shape = torch.Size([128])
layer = fc2.weight | feature shape = torch.Size([64, 128])
layer = fc2.bias | feature shape = torch.Size([64])

layer = fc3.weight | feature shape = torch.Size([10, 64])
layer = fc3.bias | feature shape = torch.Size([10])

e The .state dict() contains all the trainable parameters of the model, this is used for optimization and
saving/restoring the model.

SAPIENZA

UNIVERSITA DI ROMA

So far...

device = torch.device('cpu')
dataset = CustomDataset()
dataloader = DataLoader(dataset, ...)
model = MyModel()
model. to(device)
for 1 in range(epochs):
training_loss = 0
for sample in dataloader:
input = sample['input'].to(device)
target = sample['target'].to(device)
prediction = model(input)
loss = loss_function(prediction, target)
training_loss += loss.item()
loss.backward()
updating the model
print(f'Current training loss: {training_loss}')
validation loop

saving the model

SAPIENZA

UNIVERSITA DI ROMA

Optimizers

Choosing an Optimizer

Using PyTorch’s optimizers is easy!

import torch
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)

for sample in dataloader:
input = sample['input'].to(device)
target = sample['target’'].to(device)
prediction = model(input)
loss = loss_fn(prediction, target)

optimizer.zero_grad() # clears the gradients
loss.backward()
optimizer.step() # performs the optimization

() S APTENZA

AU/ UNIVERSITA DI ROMA

Accumulating Gradients (a Trick)

e If we don't clear the gradients, they sum up.
e This is often source of bugs, but it can be exploited for larger effective batch sizes:

import torch
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)

optimizer.zero_grad()

for idx, sample in enumerate(dataloader):
input = sample['input'].to(device)
target = sample['target'].to(device)

prediction = model(input)
loss = loss_fn(prediction, target)

loss.backward()

if idx % 10 = 9:
optimizer.step()
optimizer.zero_grad()

SAPIENZA

UNIVERSITA DI ROMA

Save/Load Models

Saving the internal state of a pyTorch model

e Saving and loading can easily be done using “torch.save” and “torch.load”
e pyTorch uses “pickling” to serialize the data.

>>> state = {'model_state' : model.state_dict(),
'optimizer': optimizer.state_dict)}
>>> torch.save(state, 'state.pt')

Restoring state:

>>> model = Model()

>>> optimizer = optim.SGD(model_parameters(), lr=0.01)
>>> checkpoint = torch.load('state.pt')

>>> model.load_state_dict(checkpoint['model_state'])
>>> optimizer.load_state_dict(checkpoint['optimizer_state'])

SAPIENZA

UNIVERSITA DI ROMA

A Typical ML Pipeline

All the pieces together, part 1

import json
config = json.load(open('config.cfg'))
device = torch.device(config['device'])
training_data = CustomDataset(..., **config['train'])
validation_data = CustomDataset(..., **config['valid'])
train_loader = DatalLoader(training_data, **config['loader'])
validation_loader = DatalLoader(validation_data, **config['loader'])
model = MyModel(**config['model’'])
model.to(device)
optimizer = Optimizer(model.parameters(), **config['optimizer'])
for 1 in range(config['epochs']):
model.train()
for sample in train_loader:
optimizer.zero_grad()
input, target = sample['input'].to(device), sample['target'].to(device)
prediction = model(input)
loss = loss_function(prediction, target)
print(f'Current training loss: {loss.item()}')
loss.backward()
optimizer.step()

SAPIENZA

UNIVERSITA DI ROMA

All the pieces together, part 2

validation loop
model.eval()
validation_loss = 0
for sample in validation_loader:
input, target = sample['input'].to(device), sample['target'].to(device)
prediction = model(input)
loss = loss_function(prediction, target)
validation_loss += loss.item()
print(f'Current validation loss: {validation_loss}')
if validation_loss < config['loss_threshold']: # or other condition
break
full_state = {'model_state' : model.state_dict(), 'optimizer': optimizer.state_dict)}
torch.save(full_state, 'parameters.pt')

SAPIENZA

UNIVERSITA DI ROMA

Reproducibility

e Sometimes it is hard to reproduce bugs because of the randomness in the training. The solution is using
fixed random seeds.
e For debugging purposes, you should start your codes with these lines:

import numpy as np
np.random.seed(42) # your favourite integer

import torch

torch.manual_seed(42) # your favourite integer
torch.backends.cudnn.deterministic = True # disable optimizations
torch.backends.cudnn.benchmark = False

But remove them when you are done with debugging,
otherwise all the models will be the same!
See: https://pytorch.org/docs/stable/notes/randomness.html

SAPIENZA

UNIVERSITA DI ROMA

Colab Example

https://colab.research.google.com/drive/IHUWqge-hdUQZMdIQX0fys77cOpUycxSPi#scrollTo=Y9qgcgKUmyBXD

SAPIENZA

UNIVERSITA DI ROMA

https://colab.research.google.com/drive/1HUWge-hdUQZMdIQX0fys77c9pUycxSPj#scrollTo=Y9gcgKUmyBXD
https://colab.research.google.com/drive/1HUWge-hdUQZMdIQX0fys77c9pUycxSPj#scrollTo=Y9gcgKUmyBXD

Deep Learning

Automatic Differentiation and Pytorch

SAPIENZA

UNIVERSITA DI ROMA

Fabrizio Silvestri

