
Deep Learning
Automatic Differentiation and Pytorch

Fabrizio Silvestri



Recall: Optimizing ML Models







How to Compute Gradients



Motivations

● Backpropagation in NN models

○ Implementing Backprop by hand is like programming in 

Assembly. You can do it, but… why?

○ Still, if you know assembly you are better off!



Terminology

● Automatic differentiation (autodiff) refers to a general way of taking a 

program which computes a value, and automatically constructing a 

procedure for computing derivatives of that value.

○ In this lecture, we focus on reverse mode autodiff. There is also a 

forward mode, which is for computing directional derivatives.

● Backpropagation is the special case of autodiff applied to neural nets

○ But in machine learning, we often use backprop synonymously with 

autodiff

● Autograd is the name of a particular autodiff package.

○ But lots of people, including the PyTorch developers, got confused 

and started using “autograd” to mean “autodiff”



What Autodiff is not

● Autodiff is not finite differences.

○ Finite differences are expensive, since you need to do a 

forward pass for each derivative.

○ It also induces huge numerical error.

● Autodiff is both efficient (linear in the cost of computing the value) 

and numerically stable.



What Autodiff is not

● Autodiff is not symbolic differentiation (e.g. Mathematica).

○ Symbolic differentiation can result in complex and redundant 

expressions.

● The goal of autodiff is not a formula, but a procedure for computing 

derivatives.



What Autodiff is

● An autodiff system will convert the program into a sequence of primitive 

operations which have specified routines for computing derivatives.

○ In this representation, backprop can be done in a completely mechanical way.



Computation Graph



Computation Graph: Logistic Regression

-zz t1 exp(t1) 1+t2t2 1/t3t3 Y

1

def logistic(z):

return 1. / (1. + np.exp(z))

Z = 1.5

Y = logistic(1.5)



Computation Graph: Include the Loss

wxx

w

t1

b

t1 + b -zz exp(t3)t3 1 + t4t4

1/t5t5 y - ty

t

t6
2t6 t7 / 2t7

1

2



Backprop on the Computation Graph: Reverse Mode

● (Reverse Mode) Autodiff 

starts at an output of the 

graph and moves towards 

the beginning.

● At each node, it merges 

all paths which originated 

at that node.

● Example: (a+b)(b+1)



Backprop on the Computation Graph: Reverse Mode



Things can get complicated :)

This is a Gated Recurrent 

Unit (GRU) Computation 

Graph



pyTorch
(slides inspired by this deck)

https://www.uio.no/studier/emner/matnat/ifi/IN5400/v20/material/lectureslides/in5400_week4_2020_pytorch_lecture4.pdf


Do you have pyTorch installed?



pyTorch packages



torch.tensor

● PyTorch ’s tensors are very similar to NumPy’s ndarrays

○ but they have a device attached, 'cpu', 'cuda', or 'cuda:X'

● They might require gradients



pyTorch Data Types



Creating Tensors

● eye: creating diagonal matrix / tensor

● zeros: creating tensor filled with zeros

● ones: creating tensor filled with ones

● linspace: creating linearly increasing values

● arange: linearly increasing integers



pyTorch functions, dimensionality



Indexing

● Standard numpy indexing works:



Memory: Sharing vs. Copying

● Copy Data:
○ torch.Tensor()

○ torch.tensor()

○ torch.clone()

○ type casting
● Share Data

○ torch.as_tensor()

○ torch.from_numpy()

○ torch.view()

○ torch.reshape()

Most shape changing operators keep data.



Memory: Sharing vs. Copying

● How to test it?

○ create a tensor

○ copy/clone/view it

○ modify an element

○ compare the elements



Creating Instances of torch.Tensor w/o Data



Interacting with numpy

● Remarks:

○ arrays / tensors must be on the same device.

○ only detached arrays can be converted to numpy (see later)

○ if data types are not the same, casting might be needed (v1.1 or older)

■ E.g. adding an integer and a float tensor together.



Autograd Example



Under the Hood (a little bit)



Autograd (a little bit better)



Autograd (a little bit better)



Under the Hood (a little bit)



Context managers, decorators

● We can locally disable/enable gradient calculation with

○ torch.no_grad()

○ torch.enable_grad()

● or using the @torch.no_grad @torch.enable_grad decorators



Example: Linear Regression

● Generating data:

● Defining loss function:



Example: Linear Regression

● Data as torch tensors and the unknown variables:



Example: Linear Regression

● Training Loop:



Example: Linear Regression

● Result:



Other useful pyTorch’s tensor functions

● If you want to detach a tensor from the graph, you can use « detach() »

● If you want to get a python number from a tensor, you can use « item() »

● But if you just take an element, it still will be part of the computational graph!



Functional

● The «torch.nn.functional» package is the functional interface for Pytorch features.

● Most feature exist both as a function and as a class.

● Structural parts, or objects with internal state usually used as objects

● Stateless or simple expressions are usually used in functional form.

● Activation functions, losses, convolutions, etc. It is a huge module.



A typical (pyTorch) ML Workflow

1. creating dataset

2. creating a neural network (model)

3. defining a loss function

4. loading samples (data loader)

5. predicting with the model

6. comparison of the prediction and the target (loss)

7. backpropagation: calculating gradients from the error

8. updating the model (optimizer)

9. checking the loss: if low enough, stop training



Data Loading



Data loading and preprocessing

● The «torch.utils.data» package have two useful classes for loading and 

preprocessing data:

○ torch.utils.data.Dataset

○ torch.utils.data.DataLoader

● For more information visit:

○ https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html


torch.utils.data.Dataset: Regression Ex. revisited



torch.utils.data.Dataset: Image Datasets



torch.utils.data.Dataset: Image Datasets



torch.utils.data.Dataloader



Data augmentation

● modifying the dataset for better training (more robust, etc.)

● data set can have a a transform parameter

More details can be found here: 

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html


Data augmentation



Data transformation



Creating the Model



nn.Module

● A model is of a nn.Module class type. A model can contain other models. E.g. we can create the class 

“Model” based on the stacking nn.Modules of type nn.Linear()

● The nn.Module’s weights as called “Parameters”, and are similar to tensors with 

“requires_grad=True”.

● A nn.Module consists of an initialization of the Parameters and a forward function.



Model



Model: Alternative Declaration



nn.Module’s member functions

● Access model information

● Children: the parameters and modules / layers defined in the constructor.

● Parts defined in the forward method will not be listed.

● Forward is called many times, expensive objects should not be recreated.

Some layers as e.g. "dropout" and "batch_norm" should operate differently during training and evaluation of the 

model. We can set the model in different state by the .train() and .eval() functions.



Model’s Parameters

● The .state_dict() contains all the trainable parameters of the model, this is used for optimization and 

saving/restoring the model.



So far…



Optimizers



Choosing an Optimizer

Using PyTorch’s optimizers is easy!



Accumulating Gradients (a Trick)

● If we don't clear the gradients, they sum up.
● This is often source of bugs, but it can be exploited for larger effective batch sizes:



Save/Load Models



Saving the internal state of a pyTorch model
● Saving and loading can easily be done using “torch.save” and “torch.load”

● pyTorch uses “pickling” to serialize the data.



A Typical ML Pipeline



All the pieces together, part 1



All the pieces together, part 2



Reproducibility

● Sometimes it is hard to reproduce bugs because of the randomness in the training. The solution is using 

fixed random seeds.

● For debugging purposes, you should start your codes with these lines:



Colab Example

https://colab.research.google.com/drive/1HUWge-hdUQZMdIQX0fys77c9pUycxSPj#scrollTo=Y9gcgKUmyBXD

https://colab.research.google.com/drive/1HUWge-hdUQZMdIQX0fys77c9pUycxSPj#scrollTo=Y9gcgKUmyBXD
https://colab.research.google.com/drive/1HUWge-hdUQZMdIQX0fys77c9pUycxSPj#scrollTo=Y9gcgKUmyBXD


Deep Learning
Automatic Differentiation and Pytorch

Fabrizio Silvestri


